Multigrid second-order accurate solution of parabolic control-constrained problems
نویسندگان
چکیده
A mesh-independent and second-order accurate multigrid strategy to solve control-constrained parabolic optimal control problems is presented. The resulting algorithms appear to be robust with respect to change of values of the control parameters and have the ability to accommodate constraints on the control also in the limit case of bang-bang control. Central to the development of these multigrid schemes is the design of iterative smoothers which can be formulated as local semismooth Newton methods. The design of distributed controls is considered to drive nonlinear parabolic models to follow optimally a given trajectory or attain a final configuration. In both cases, results of numerical experiments and theoretical twogrid local Fourier analysis estimates demonstrate that the proposed schemes are able to solve parabolic optimality systems with textbook multigrid efficiency. Further results are presented to validate second-order accuracy and the possibility to track a trajectory over long time intervals by means of a receding-horizon approach. Supported in part by the Austrian Science Fund SFB Project F3205-N18 “Fast Multigrid Methods for Inverse Problems”. S. González Andrade · A. Borzì ( ) Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz, Heinrichstr. 36, 8010 Graz, Austria e-mail: [email protected] S. González Andrade e-mail: [email protected] S. González Andrade Research Group on Optimization, Departamento de Matemática, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador A. Borzì Dipartimento e Facoltà di Ingegneria, Palazzo Dell’Aquila Bosco Lucarelli, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italia 836 S. González Andrade, A. Borzì
منابع مشابه
Multigrid Solution of a Lavrentiev-Regularized State-Constrained Parabolic Control Problem
A mesh-independent, robust, and accurate multigrid scheme to solve a linear state-constrained parabolic optimal control problem is presented. We first consider a Lavrentiev regularization of the state-constrained optimization problem. Then, a multigrid scheme is designed for the numerical solution of the regularized optimality system. Central to this scheme is the construction of an iterative p...
متن کامل4 A Multigrid Method for the Solution of Linear-Quadratic Optimal Control Problems
The main part of this chapter is devoted to the development and presentation of a coupled multigrid method for the solution of saddle point systems (2.51) arising from the discretization of PDE constrained optimization problems. In subsequent chapters, the devised method will be adapted to handle inequality constraints on the control, and it will be employed for the solution of the systems, whi...
متن کاملOn a Sqp-multigrid Technique for Nonlinear Parabolic Boundary Control Problems
We consider the application of an SQP method to an optimal control problem governed by the heat equation with nonlinear boundary conditions. The objective functional consists of a quadratic terminal part and a quadratic regularization term. To handle the quadratic optimal control subproblems with high precision, very large scale mathematical programming problems have to be treated. The solution...
متن کاملThe Analysis of Multigrid Algorithms for Nonconforming and Mixed Methods for Second Order Elliptic Problems
In this paper we consider multigrid algorithms for nonconforming and mixed nite element methods for second order elliptic problems on triangular and rectangular nite elements. We prove optimal convergence properties of the W-cycle multigrid algorithm and uniform condition number estimates for the variable V-cycle preconditioner. Lower order terms are treated, so our results also apply to parabo...
متن کاملB-Spline-Based Monotone Multigrid Methods
Abstract. For the efficient numerical solution of elliptic variational inequalities on closed convex sets, multigrid methods based on piecewise linear finite elements have been investigated over the past decades. Essential for their success is the appropriate approximation of the constraint set on coarser grids which is based on function values for piecewise linear finite elements. On the other...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 51 شماره
صفحات -
تاریخ انتشار 2012